Honeywell

User Manual

SmartVFD Compact

Variable Frequency Drives for Constant and Variable Torque Applications

User's Manual

Index

1. SAFETY	4
1.1 Warnings	.4
1.2 Safety instructions	6
1.3 Grounding and Ground fault protection	6
1.4 Before running the motor	7
2. RECEIPT OF DELIVERY	8
2.1 Type designation code	8
2.2 Storage	9
2.3 Maintenance	9
2.4 Warranty	9
3. TECHNICAL DATA	.10
3.1 SmartVFD Compact technical data	.10
3.2 Power ratings	.11
3.2.1 SmartVFD Compact - Mains voltage 208 - 240 V	.11
3.2.2 SmartVFD Compact - Mains voltage 380 - 480 V	.11
3.2.3 SmartVFD Compact - Mains voltage 230 V, 3~	.12
3.2.4 SmartVFD Compact - Mains voltage 115 V, 1~	.12
3.2.5 SmartVFD Compact - Mains voltage 575 V, 3~	.13
4. INSTALLATION	14
4.1 Mechanical installation	.14
4.1.1 SmartVFD Compact dimensions	15
4.1.2 Cooling	.16
4.1.3 EMC levels	.16
4.1.4 Changing the EMC protection class from H or L to T	.17
4.2 Cabling and connections	.18
4.2.1 Power cabling	.18
4.2.2 Control cabling	.19
4.2.3 Cable and fuse specifications	.21
4.2.4 General cabling rules	.22
4.2.5 Stripping lengths of motor and mains cables	.23
4.2.6 Cable installation and the UL standards	.23
4.2.7 Cable and motor insulation checks	.23
5. COMMISSIONING	25
5.1 Commissioning steps of SmartVFD Compact	25
6. FAULT TRACING	.27
7. SMARTVFD COMPACT APPLICATION INTERFACE	.30
7.1 Introduction	.30

	7.2 Control I/O	32
8. C(ONTROL PANEL	34
	8.1 General	34
	8.2 Display	34
	8.3 Keypad	35
	8.4 Navigation on the SmartVFD Compact control panel	36
	8.4.1 Main menu	36
	8.4.2 Reference menu	37
	8.4.3 Monitoring menu	38
	8.4.4 Parameter menu	40
	8.4.5 Fault history menu	41
9. G	ENERAL PURPOSE APPLICATION PARAMETERS	43
	9.1 Quick setup parameters (Virtual menu, shows when par.	
1	13.1 = 1)	44
	9.2 Motor settings (Control panel: Menu PAR -> P1)	46
	9.3 Start/stop setup (Control panel: Menu PAR -> P2)	47
	9.4 Frequency references (Control panel: Menu PAR -> P3)	47
	9.5 Ramps and brakes setup (Control panel: Menu PAR -> P4)	48
	9.6 Digital inputs (Control panel: Menu PAR -> P5)	48
	9.7 Analogue inputs (Control panel: Menu PAR -> P6)	50
	9.8 Digital and analogue outputs (Control panel: Menu PAR -	
	> P7)	50
	9.9 Protections (Control panel: Menu PAR -> P9)	52
	9.10 Autorestart parameters (Control panel: Menu PAR ->	
	P10)	53
	9.11 PI control parameters (Control panel: Menu PAR -> P12)	54
	9.12 Easy usage menu (Control panel: Menu PAR -> P0)	55
	9.13 System parameters	55
10. F	PARAMETER DESCRIPTIONS	57
	10.1 Motor settings (Control panel: Menu PAR -> P1)	57
	10.2 Start/Stop setup (Control panel: Menu PAR -> P2)	60
	10.3 Frequency references (Control panel: Menu PAR -> P3)	62
	10.4 Ramps & brakes setup (Control panel: Menu PAR -> P4)	62
	10.5 Digital inputs (Control panel: Menu PAR -> P5)	65
	10.6 Analogue inputs (Control panel: Menu PAR -> P6)	66
	10.7 Digital and analogue outputs (Control panel: Menu PAR	
	-> P7)	67
	10.8 Motor thermal protection (parameters 9.7 - 9.10)	67
	10.9 Autorestart parameters (Control panel: Menu PAR ->	
	P10)	69
	10 10 PL control parameters (Control panel: Menu PAR -> P12)	70
	10.101 Found parameters (control paren. Menu FAR -> 1 12)	10

10.11 Easy usage menu (Control panel: Menu PAR -> P	9)71
10.12 Fieldbus parameters (Control panel: Menu PAR ->	• S2)73
10.12.1 Modbus process data	74

1. SAFETY

ONLY A COMPETENT ELECTRICIAN IS ALLOWED TO CARRY OUT THE ELECTRICAL INSTALLATION!

This manual contains clearly marked cautions and warnings which are intended for your personal safety and to avoid any unintentional damage to the product or connected appliances.

Please read the information included in cautions and warnings carefully:

= Dangerous voltage Risk of death or severe injury

= General warning

Risk of damage to the product or connected appliances

1.1 WARNINGS

A	1	The components of the power unit of the frequency converter are live when SmartVFD Compact is connected to mains poten- tial. Coming into contact with this voltage is extremely dangerous and may cause death or severe injury. The control unit is iso- lated from the mains potential.
A	2	The motor terminals U, V, W (T1, T2, T3) and the possible brake resistor terminals -/+ are live when SmartVFD Compact is con- nected to mains, even if the motor is not running.
A	3	The control <i>I/O</i> -terminals are isolated from the mains potential. However, the relay output terminals may have a dangerous con- trol voltage present even when SmartVFD Compact is discon- nected from mains.
A	4	The ground leakage current of SmartVFD Compact frequency converters exceeds 3.5mA AC. According to standard EN61800- 5-1, a reinforced protective ground connection must be ensured.
A	5	If the frequency converter is used as a part of a machine, the machine manufacturer is responsible for providing the machine with a main switch (EN 60204-1).

A	6	If SmartVFD Compact is disconnected from mains while running the motor, it remains live if the motor is energized by the proc- ess. In this case the motor functions as a generator feeding energy to the frequency converter.
A	7	After disconnecting the frequency converter from the mains, wait until the fan stops and the indicators on the display go out. Wait 5 more minutes before doing any work on SmartVFD Compact connections.

1.2 SAFETY INSTRUCTIONS

\land	1	The SmartVFD Compact frequency converter has been designed for fixed installations only.
\wedge	2	Do not perform any measurements when the frequency converter is connected to the mains.
\wedge	3	Do not perform any voltage withstand tests on any part of Smart- VFD Compact. The product safety is fully tested at factory.
\wedge	4	Prior to measurements on the motor or the motor cable, discon- nect the motor cable from the frequency converter.
	5	Do not open the cover of SmartVFD Compact. Static voltage dis- charge from your fingers may damage the components. Opening the cover may also damage the device. If the cover of SmartVFD Compact is opened, warranty becomes vold.

1.3 GROUNDING AND GROUND FAULT PROTECTION

The SmartVFD Compact frequency converter **must always** be grounded with an grounding conductor connected to the grounding terminal. See figure below:

- The ground fault protection inside the frequency converter protects only the converter itself against ground faults.
- If fault current protective switches are used they must be tested with the drive with ground fault currents that are possible to arise in fault situations.

1.4 BEFORE RUNNING THE MOTOR

Checklist:

Before starting the motor, check that the motor is mounted properly and ensure that the machine connected to the motor allows the motor to be started.

Set the maximum motor speed (frequency) according to the motor and the machine connected to it.

Before reversing the motor shaft rotation direction make sure that this can be done safely.

Make sure that no power correction capacitors are connected to the motor cable.

2. RECEIPT OF DELIVERY

After unpacking the product, check that no signs of transport damages are to be found on the product and that the delivery is complete (compare the type designation of the product to the code below).

Should the drive have been damaged during the shipping, please contact primarily the cargo insurance company or the carrier.

If the delivery does not correspond to your order, contact the supplier immediately.

2.1 TYPE DESIGNATION CODE

Figure 2.1: SmartVFD Compact type designation code

2.2 STORAGE

If the frequency converter is to be kept in store before use make sure that the ambient conditions are acceptable:

Storing temperature -40 °F(-40 °C)...+70 °F(21 °C)

Relative humidity < 95%, no condensation

2.3 MAINTENANCE

In normal operating conditions, SmartVFD Compact frequency converters are maintenance-free.

2.4 WARRANTY

Only manufacturing defects are covered by the warranty. The manufacturer assumes no responsibility for damages caused during or resulting from transport, receipt of the delivery, installation, commissioning or use.

The manufacturer shall in no event and under no circumstances be held responsible for damages and failures resulting from misuse, wrong installation, unacceptable ambient temperature, dust, corrosive substances or operation outside the rated specifications. Neither can the manufacturer be held responsible for consequential damages.

Variable frequency drive devices (VFD) and accessories: new products for thinty-six (36) months and factory refurbished drives for twelve (12) months from date of installation when start-up and commissioning is performed by Honeywell VFD Authorized and trained personnel. All VFD warranty return products must have priorauthorization (Form No. 87-0284) and be returned only to the VFD Service Center in Chattanooga, TN.

3. TECHNICAL DATA

3.1 SMARTVFD COMPACT TECHNICAL DATA

	Frame	H (in)	W (in)	D (in)	Weight (lb)			
Dimensions	MI1	6.1	2.6	3.9	1.2			
and weight	MI2	7.7	3.5	4.0	1.5			
	MI3	10.3	3.9	4.3	2.18			
Supply network		SmartVFD corner gro	SmartVFD Compact (400V) cannot be used with corner grounded networks					
	Output voltage	0 - U _{in}						
Motor connection	Output current	Continuou ture max. 1min/10m	s rated curr 122 °F (+50 in	ent I _N at amb ℃), overloa	oient tempera- d 1.5 x I _N max.			
	Ambient operating temperature	14 °F (-10 loadability	°C) (no fro I _N	st)122 °F (+50 °C): rated			
Ambient conditions	Storage tempera- ture	-40 °F (-40 °C)+158 °F (+70 °C)						
	Relative humidity	095% RH, non-condensing, non-corrosive, no dripping water						
	Altitude	100% load capacity (no derating) up to 3280 ft. 1% derating for each 328 ft above 3280 ft; max. 6560 ft						
	Enclosure class	IP20 (open Chassis), option: NEMA 1						
	Immunity	Complies with EN50082-1, -2, EN61800-3						
ЕМС	Emissions	230V : Complies with EMC category C2 (Honey- well level H); With an internal RFI filter 400V: Complies with EMC category C2 (Honey- well level H): With an internal RFI filter Both: No EMC emission protection (Honeywell level N): Without RFI filter						
Standards		For EMC: EN61800-3, For safety: UL508C, EN61800-5-1						
Certificates and manufacturer's declarations of conformity		For safety: CB, CE, UL, cUL, For EMC: CE, CB, c-tick (see unit nameplate for more detailed approvals)						

Table 3.1 : SmartVFD Compact technical data

3.2 POWER RATINGS

3.2.1 SmartVFD Compact - Mains voltage 208 - 240 V

Mains voltage 208-240 V, 50/60 Hz, 1~ series						
Product code	Rated loadability		Motor shaft power	Nominal input current	Mechanical size and weight (lb)	
	100% contin. current I _N [A]	150% overload current [A]	P [HP]	[A]		
HVFDCD1B0003xxx	1.7	2.6	0.25	4.2	MI1 1.2	
HVFDCD1B0005xxx	2.4	3.6	0.5	5.7	MI1 1.2	
HVFDCD1B0007xxx	2.8	4.2	0.75	6.6	MI1 1.2	
HVFDCD1B0010xxx	3.7	5.6	1	8.3	MI2 1.5	
HVFDCD1B0015xxx	4.8	7.2	1.5	11.2	MI2 1.5	
HVFDCD1B0020xxx	7.0	10.5	2	14.1	MI2 1.5	
HVFDCD1B0030xxx	9.6	14.4	3	15.8	MI3, 2.18	

Table 3.2 : SmartVFD Compact power ratings, 208 - 240 V

3.2.2 SmartVFD Compact - Mains voltage 380 - 480 V

Mains voltage 380-480 V, 50/60 Hz, 3~ series						
Product code	Rated loadability		Motor shaft power	Nomina I input current	Mechanical size and weight (lb)	
	100% continuous current I _N [A]	150% overload current [A]	380-480V supply P[HP]	[A]		
HVFDCD3C0005xxx	1.3	2.0	0.5	2.2	MI1 1.2	
HVFDCD3C0007xxx	1.9	2.9	0.75	2.8	MI1 1.2	
HVFDCD3C0010xxx	2.4	3.6	1	3.2	MI1 1.2	
HVFDCD3C0015xxx	3.3	5.0	1.5	4.0	MI2 1.5	
HVFDCD3C0020xxx	4.3	6.5	2	5.6	MI2 1.5	
HVFDCD3C0030xxx	5.6	8.4	3	7.3	MI2 1.5	
HVFDCD3C0040xxx	7.6	11.4	4	9.6	MI3, 2.18	
HVFDCD3C0050xxx	9.0	13.5	5	11.5	MI3, 2.18	
HVFDCD3C0075xxx	12.0	18.0	7.5	14.9	MI3, 2.18	

Table 3.3 : SmartVFD Compact power ratings, 380 - 480 V

	/		
/	1	2	

3

Mains voltage 208-240 V, 50/60 Hz, 3~ series					
Product code	Rated loadability		Motor shaft power	Nomina I input current	Mechanical size and weight (lb)
	100% contin. current I _N [A]	150% overload current [A]	P[HP]	[A]	
HVFDCD3B0003xxx	1.7	2.6	0.33	2.7	MI1 1.2
HVFDCD3B0005xxx	2.4	3.6	0.5	3.5	MI1 1.2
HVFDCD3B0007xxx	2.8	4.2	0.75	3.8	MI1 1.2
HVFDCD3B0010xxx	3.7	5.6	1	4.3	MI2 1.5
HVFDCD3B0015xxx	4.8	7.2	1.5	6.8	MI2 1.5
HVFDCD3B0020xxx	7.0	10.5	2	8.4	MI2 1.5
HVFDCD3B0030xxx	11	16.5	3	13.4	MI3 2.18

3.2.3 SmartVFD Compact - Mains voltage 230 V, 3~

Table 3.4 : SmartVFD Compact power ratings 208 - 240 V, 3~

3.2.4 SmartVFD Compact - Mains voltage 115 V, 1~

Mains voltage 115 V, 50/60 Hz, 1~ series						
Product code	Rated loadability		Motor shaft power	Nomina I input current	Mechanical size and weight (lb)	
	100% continuous current I _N [A]	150% overload current [A]	380-480V supply P[HP]	[A]		
HVFDCD1A0003xxx	1.7	2.6	0.33	9.2	MI2 1.5	
HVFDCD1A0005xxx	2.4	3.6	0.5	11.6	MI2 1.5	
HVFDCD1A0007xxx	2.8	4.2	0.75	12.4	MI2 1.5	
HVFDCD1A0010xxx	3.7	5.6	1	15	MI2 1.5	
HVFDCD1A0015xxx	4.8	7.2	1.5	16.5	MI3 2.18	

Table 3.5 : SmartVFD Compact power ratings 115 V, 1~

Note! The output voltage of the 115 V drives is 230 V.

13

Mains voltage 575 V, 50/60 Hz, 3~ series								
Product code	Rated lo	adability	Motor shaft power	Nomina I input current	Mechanical size and weight (lb)			
	100% contin. current I _N [A]	150% overload current [A]	P[HP]	[A]				
HVFDCD3D0010xxx	1.7	2.6	1	2	MI3 2.18			
HVFDCD3D0020xxx	2.7	4.1	2	3.6	MI3 2.18			
HVFDCD3D0030xxx	3.9	5.9	3	5	MI3 2.18			
HVFDCD3D0055xxx	6.1	9.2	5.4	7.6	MI3 2.18			
HVFDCD3D0075xxx	9	13.5	7.5	10.4	MI3 2.18			
HVFDCD3D0100xxx	11	16.5	10	14.1	MI3 2.18			

3.2.5 SmartVFD Compact - Mains voltage 575 V, 3~

Table 3.6 : SmartVFD Compact power ratings 575 V, 3~

Note 1: The input currents are calculated values with 100 kVA line transformer supply.

Note 2: The mechanical dimensions of the units are given in Chapter 4.1.1.

4. INSTALLATION

4.1 MECHANICAL INSTALLATION

There are two possible ways to mount the SmartVFD Compact to the wall - either screw or DIN-rail mounting. The mounting dimensions are given on the back of the drive and on the following page.

Figure 4.1: Screw mounting

Figure 4.2: DIN-rail mounting

4.1.1 SmartVFD Compact dimensions

Туре	H1	H2	H3	W1	W2	W3	D1	D2
MI1	6.H	5.8AMM	0000001.4 <i>A</i> 0000	*****G6/****	XXXXXXF.5/XXXX	₩₩₩€.2/₩₩	WWW F19	0.3
MI2	7.7	7.2	6.7	3.5	2.5	0.2	4	0.3
MI3	10.€	9.1	9.€##	XXXXXXH 19AXXX	*******H0/*****	XXXX€.2AXXX	9999943 <i>/</i> 99996	₩₩€ .3

Table 4.1 : SmartVFD Compact dimensions in inches

4.1.2 Cooling

Forced air flow cooling is used in all SmartVFD Compact drives.

Enough free space must be left above and below the frequency converter to ensure sufficient air circulation and cooling. The required dimensions for free space are given in the table below:

Туре	Dimensions (inch)					
	A	В				
MI1	3.9	2.0				
MI2	3.9	2.0				
MI3	3.9	2.0				

Table 4.2 : Dimensions required for cooling

Туре	Cooling air required (CFM)
MI1	5.89
MI2	5.89
MI3	17.7

Table 4.3 : Required cooling air

4.1.3 EMC levels

SmartVFD Compact frequency converters are divided into five classes according to the level of electromagnetic disturbances emitted, the requirements of a power system network and the installation environment (see below). The EMC class of each product is defined in the type designation code.

Category C1: Frequency converters of this class comply with the requirements of category C1 of the product standard EN 61800-3 (2004). Category C1 ensures the best EMC characteristics and it includes converters the rated voltage of which is less than 1000V and which are intended for use in the 1st environment. NOTE: The requirements of class C are fulfilled only as far as the conducted emissions are concerned.

Category C2: Frequency converters of this class comply with the requirements of category C2 of the product standard EN 61800-3 (2004). Category C2 includes converters in fixed installations and the rated voltage of which is less than 1000V. The class H frequency converters can be used both in the 1st and the 2nd environment.

Category C3: Frequency converters of this class comply with the requirements of category C3 of the product standard EN 61800-3 (2004). Cateory C3 includes converters the rated voltage of which is less than 1000V and which are intended for use in the second environment only.

Category C4: The drives of this class do not provide EMC emission protection. These kinds of drives are mounted in enclosures. NOTE: An external EMC filter is usually required to fulfil the EMC emission requirements.

Category C4 for IT networks: Frequency converters of this class fulfil the product standard EN 61800-3 (2004) if intended to be used in IT systems. In IT systems, the networks are isolated from ground, or connected to ground through high impedance to achieve a low leakage current. NOTE: if converters are used with other supplies, no EMC requirements are complied with.

Environments in product standard EN 61800-3 (2004)

First environment: Environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: houses, apartments, commercial premises or offices in a residential building are examples of first environment locations.

Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: industrial areas, technical areas of any building fed from a dedicated transformer are examples of second environment locations.

4.1.4 Changing the EMC protection class from H or L to T

The EMC protection class of SmartVFD Compact frequency converters can be changed from class H or L to class T by **removing the EMC-capacitor disconnecting screw**, see figure below.

Note! Do not attempt to change the EMC level back to class H or L. Even if the procedure above is reversed, the frequency converter will no longer fulfil the EMC requirements of class H/L!

4.2 CABLING AND CONNECTIONS

4.2.1 Power cabling

Note! Tightening torque for power cables is 4 - 5 in-lbs.

Figure 4.5: SmartVFD Compact power connections, MI2 - MI3

4.2.2 Control cabling

Figure 4.6: Mount the PE- plate and API cable support

Figure 4.7: Open the cover

Figure 4.8: Install the control cables. See Chapter 7.2

4.2.3 Cable and fuse specifications

Use cables with heat resistance of at least 158 °F (+70 °C). The cables and the fuses must be sized according to the tables below. Installation of cables according to UL regulations is presented in Chapter 4.2.6.

The fuses also function as cable overload protection.

These instructions apply only to cases with one motor and one cable connection from the frequency converter to the motor. In any other case, ask the factory for more information.

EMC class	Level H	Level L	Level N
Mains cable types	1	1	1
Motor cable types	3	2	1
Control cable types	4	4	4

Table 4.4 : Cable types required to meet standards. EMC levels are described in Chapter 4.1.3.

Cable type	Description
1	Power cable intended for fixed installation and the specific mains voltage. Shielded cable not required. (NKCABLES/MCMK or similar recommended)
2	Power cable equipped with concentric protection wire and intended for the specific mains voltage. (NKCABLES /MCMK or similar recommended).
3	Power cable equipped with compact low-impedance shield and intended for the specific mains voltage. (NKCABLES /MCCMK, SAB/ÖZCUY-J or similar recom- mended). *360° grounding of both motor and FC connection required to meet the standard
4	Screened cable equipped with compact low-impedance shield (NKCABLES /Jamak, SAB/ÖZCuY-O or similar).

Table 4.5 : Cable type descriptions

		_	Fus		Term	inal cable	size (min/	max)
Frame	Туре	ו _א [A]	e [A]	Mains cable Cu [AWG]	Main terminal [AWG]	Ground terminal [AWG]	Control terminal [AWG]	Relay terminal [AWG]
MI1	P25 - P75	1,7-3,7	10	2*15+15	15-11	15-11	20-15	20-15
MI2	1P1 - 1P5	4,8-7,0	20	2*13+13	15-11	15-11	20-15	20-15
MI3	2P2	11	32	2*9+9	15-9	15-9	20-15	20-15

Table 4.6 : Cable and fuse sizes for SmartVFD Compact, 208 - 240V

						Mains	Termi	inal cable	size (min/	'max)
Frame	Туре	ו _א [A]	Fuse [A]	cable Cu [AWG]	Main terminal [AWG]	Ground terminal [AWG]	Control terminal [AWG]	Relay terminal [AWG]		
MI1	P37 - 1P1	1,9-3,3	6	3*15+15	15-11	15-11	20-15	20-15		
MI2	1P5 - 2P2	4,3-5,6	10	3*15+15	15-11	15-11	20-15	20-15		
MI3	3P0 - 5P5	7,6 - 12	20	3*13+13	15-9	15-9	20-15	20-15		

Table 4.7 : Cable and fuse sizes for SmartVFD Compact, 380 - 480V

Note! To fulfil standard EN61800-5-1, the protective conductor should be at least AWG 7 Cu or AWG 5 Al. Another possibility is to use an additional protective conductor of at least the same size as the original one.

4.2.4 General cabling rules

1	Before starting the installation, check that none of the components of the frequency converter is live.
2	 Place the motor cables sufficiently far from other cables: Avoid placing the motor cables in long parallel lines with other cables If the motor cable runs in parallel with other cables, the minimum distance between the motor cable and other cables is 11.8 inches. The given distance also applies between the motor cables and signal cables of other systems. The maximum length of the motor cables is 100 feet. The motor cables should cross other cables at an angle of 90 degrees.
3	If cable insulation checks are needed, see Chapter 4.2.7.
4	 Connecting the cables: Strip the motor and mains cables as advised in Figure 4.9. Connect the mains, motor and control cables into their respective terminals, see Figures 4.4 - 4.8. Note the tightening torques of power cables and control cables given in page 18 and page 20. For information on cable installation according to UL regulations see Chapter 4.2.6. Make sure that the control cable wires do not come in contact with the electronic components of the unit If an external brake resistor (option) is used, connect its cable to the appropriate terminal. Check the connection of the ground cable to the motor and the frequency converter terminals marked with Connect the separate shield of the motor and the supply centre

4.2.5 Stripping lengths of motor and mains cables

Figure 4.9: Stripping of cables

Note! Strip also the plastic cover of the cables for 360 degree grounding. See Figures 4.4, 4.5 and 4.8.

4.2.6 Cable installation and the UL standards

To meet the UL (Underwriters Laboratories) regulations, a UL-approved copper cable with a minimum heat-resistance of 140/167 $^{\circ}$ F (+60/75 $^{\circ}$ C) must be used.

4.2.7 Cable and motor insulation checks

These checks can be performed as follows if motor or cable insulations are suspected to be faulty.

1. Motor cable insulation checks

Disconnect the motor cable from terminals U/T1, V/T2 and W/T3 of the frequency converter and from the motor. Measure the insulation resistance of the motor cable between each phase conductor as well as between each phase conductor and the protective ground conductor.

The insulation resistance must be >1MOhm.

2. Mains cable insulation checks

Disconnect the mains cable from terminals L1, L2/N and L3 of the frequency converter and from the mains. Measure the insulation resistance of the mains cable between each phase conductor as well as between each phase conductor and the protective ground conductor. The insulation resistance must be >1MOhm.

3. Motor insulation checks

Disconnect the motor cable from the motor and open the bridging connections in the motor connection box. Measure the insulation resistance of each motor winding. The measurement voltage must equal at least the motor nominal voltage but not exceed 1000 V. The insulation resistance must be > 1MOhm.

5. COMMISSIONING

Before commissioning, note the warnings and instructions listed in Chapter 1!

5.1 COMMISSIONING STEPS OF SMARTVFD COMPACT

1	Read carefully the safety instructions in Chapter 1 and follow them.						
2	 After the installation, make sure that: both the frequency converter and the motor are grounded the mains and motor cables comply with the requirements given in Chapter 4.2.3 the control cables are located as far as possible from the power cables (see Chapter , step 2) and the shields of the shielded cables are connected to protective ground 						
3	Check the quality and quantity of cooling air (Chapter 4.1.2)						
4	Check that all Start/Stop switches connected to the I/O terminals are in ${\ensuremath{\textbf{Stop}}}\xspace$ position.						
5	Connect the frequency converter to mains						
Note: T	he following steps are valid if you have API Full or API Limited Appli- cation Interface in your SmartVFD Compact.						
6	Set the parameters of group 1 according to the requirements of your application. At least the following parameters should be set: • motor nominal voltage (par. 1.1) • motor nominal frequency (par. 1.2) • motor nominal speed (par. 1.3) • motor nominal current (par. 1.4) You will find the values needed for the parameters on the motor rating plate						

	Perform test run without motor. Perform either Test A or Test B:
7	 A) Control from the I/O terminals: Turn the Start/Stop switch to ON position. Change the frequency reference (potentiometer) Check in the Monitoring Menu that the value of Output frequency changes according to the change of frequency reference. Turn the Start/Stop switch to OFF position
1	 B) Control from the keypad: Select the keypad as the control place with par. 2.1. You can also move to keypad control by pressing the navigation wheel for 5 seconds. Push the Start button on the keypad Check in the Monitoring Menu that the value of Output frequency changes according to the change of frequency reference Push the Stop button on the keypad
8	 Run the no-load tests without the motor being connected to the process, if possible. If this is not possible, secure the safety of each test prior to running it. Inform your co-workers of the tests. Switch off the supply voltage and wait up until the drive has stopped. Connect the motor cable to the motor and to the motor cable terminals of the frequency converter. See to that all Start/Stop switches are in Stop positions. Switch the mains ON Repeat test 7A or 7B
9	Connect the motor to the process (if the no-load test was run without the motor being connected) Before running the tests, make sure that this can be done safely. Inform your co-workers of the tests. Repeat test 7A or 7B.

6. FAULT TRACING

Note: The fault codes listed in this chapter are visible if the Application Interface has a display, like e.g. in API FULL or API LIMITED or if a personal computer has been connected to the drive

When a fault is detected by the frequency converter control electronics, the drive is stopped and the symbol F together with the ordinal number of the fault and the fault code appear on the display in the following format, e.g:

The fault can be reset by pressing the Stop button on the control keypad or via the *l*/ O terminal or fieldbus. The faults with time labels are stored in the Fault history menu which can be browsed. The different fault codes, their causes and correcting actions are presented in the table below.

Fault code	Fault name	Possible cause	Correcting actions
1	Overcurrent	Frequency converter has detected too high a current (>4*I _N) in the motor cable: • sudden heavy load increase • short circuit in motor cables • unsuitable motor	Check loading. Check motor size. Check cables.
2	Overvoltage	The DC-link voltage has exceeded the internal safety limit: • too short a deceleration time • high overvoltage spikes in mains	Increase the deceleration time (P.4.3)
3	Ground fault	Current measurement has detected extra leakage current at start: • insulation failure in cables or motor	Check motor cables and motor

Table 6.1 : Fault codes

Fault Tracing

Fault code	Fault name	Possible cause	Correcting actions
8	System fault	 component failure faulty operation 	Reset the fault and restart. Should the fault re-occur, contact the distributor near to you
9	Undervoltage	 The DC-link voltage has exceeded the internal safety limit: most probable cause: too low a supply voltage frequency converter internal fault Power outages 	In case of temporary sup- ply vollage break reset the fault and restart the frequency converter. Check the supply voltage. If it is adequate, an inter- nal failure has occurred. Contact the distributor near to you
13	Frequency converter undertemperature	IGBT switch temperature is under 14 °F(-10 °C)	Check the ambient tem- perature
14	Frequency converter overtemperature	IGBT switch temperature is over 248 °F (120 °C). Overtempera- ture warning is issued when the IGBT switch temperature exceeds 230 °F (110 °C).	Check that the cooling air flow is not blocked. Check the ambient tem- perature. Make sure that the switching frequency is not too high in relation to ambient temperature and motor load.
15	Motor stalled	Motor stall protection has tripped	Check motor
16	Motor overtempera- ture	Motor overheating has been detected by frequency converter motor temperature model. Motor is overloaded	Decrease the motor load. If no motor overload exists, check the temper- ature model parameters.
22	EEPROM checksum fault	Parameter save fault faulty operation component failure 	Contact the distributor near to you
25	Microcontroller watch- dog fault	 faulty operation component failure 	Reset the fault and restart. Should the fault re-occur, contact the distributor near to you.
34	Internal bus commu- nication	Ambient interference or defective hardware	Should the fault re-occur, contact the distributor near to you.

Table 6.1 : Fault codes

Fault code	Fault name	Possible cause	Correcting actions
35	Application fault	Application does not function	Contact the distributor near to you
50	Analogue input I _{in} < 4mA (selected signal range 4 to 20 mA)	Current at the analogue input is < 4mA • control cable is broken or loose • signal source has failed	Check the current loop circuitry
51	External fault	Digital input fault. Digital input has been programmed as exter- nal fault input and this input is active.	Check the programming and the device indicated by the external fault infor- mation. Check also the cabling of this device.
53	Fieldbus fault	The data connection between the fieldbus Master and the field- bus of the drive broken	Check installation. If installation is correct contact the nearest Hon- eywell distributor.

Table 6.1 : Fault codes

7. SMARTVFD COMPACT APPLICATION INTERFACE

7.1 INTRODUCTION

There are three versions of Application Interfaces (API) available for the SmartVFD Compact drive:

API Full	API Limited	API RS-485 (Modbus RTU)
6 Digital inputs	3 Digital inputs	1 Digital input
2 Analogue inputs	1 Analogue input	1 Relay output
1 Analogue output	1 Relay output	RS-485 Interface
1 Digital output	RS-485 Interface	
2 Relay outputs		
RS-485 Interface		

This section provides you with a description of the I/O-signals for these versions and instructions for using the SmartVFD Compact general purpose application.

The frequency reference can be selected from the analogue inputs, fieldbus, preset speeds or keypad.

Basic properties:

- Digital inputs DI1...DI6 are freely programmable. The user can assign a single input to many functions
- · Digital-, relay- and analogue outputs are freely programmable
- Analogue input 1 can be programmed as current or voltage input in API Limited version

Special features in all API versions:

- · Programmable Start/Stop and Reverse signal logic
- · Reference scaling
- · Programmable start and stop functions
- · DC-brake at start and stop
- · Programmable U/f curve
- · Adjustable switching frequency
- · Autorestart function after fault
- Protections and supervisions (all fully programmable; off, warning, fault):

31

7

- · Current signal input fault
- External fault
- · Undervoltage fault
- Ground fault
- · Motor thermal, stall and underload protection
- · Fieldbus communication

Special features in API Full and API Limited:

- · 8 preset speeds
- · Analogue input range selection, signal scaling and filtering
- · PI-controller

7.2 CONTROL I/O

32

APIFULL

	Ter	minal	Signal	Factory preset	Description
	1 +10Vre		Ref. voltage out		Maximum load 10 mA
.2 Al1		Analog signal in 1	Freq. reference P)	0 - +10 V Ri = 200 k Ω (min)	
	3	GND	I/O signal ground		
	6 24Vout		24V output for DI's		± 20 %, max. load 50 mA
	7	GND	I/O signal ground		
	8	DI1	Digital input 1	Start forward P)	0 - +30 V Ri = 12 k 2min
	9	DI2	Digital input 2	Start reverse P)	
	10	DI3	Digital input 3	Preset speed B0 P)	
	А	A	RS485 signal A	FB Communication	
	В	В	RS485 signal B	FB Communication	
\frown	4	Al2	Analog signal in 2	PI actual value P)	0(4) - 20 mA, Ri = 200 Ω
(mA)	(mA) 5 GND •		I/O signal ground		
\smile	13	GND	I/O signal ground		
	14	DI4	Digital input 4	Preset speed B1P)	0 - +30 V Ri = 12 k (2 (min)
	15	DI5	Digital input 5	Fault reset P)	
	16	DI6	Digital input 6	Disable PI contr. P)	
	18 AO			Output frequency P)	0(4) - 20 mA, RL = 500Ω
	20	DO	Digital signal out	Active = READY P)	Open collector, max. load 48V/50mA
	22	RO 11	Relay out 1	Active = RUN P)	Max. switching load:
	23	RO 12			250Vac/2A or 250Vdc/ 0.4A
	24	RO 21	Relay out 2	Active = FAULT P)	Max. switching load:
	25	RO 22			250Vac/2A or 250Vdc/
	26	RO 23			0.4A

Table 7.2 : SmartVFD Compact General purpose application default I/O configuration and connections for API FULL version

P) = Programmable function, see parameter lists and descriptions, chapters 9 and 10.

•	Terminal		Signal Factory preset		Description
7	101	iiiiiai		r detory preset	Description
	1	+10Vre	Ref. voltage out		Maximum load 10 mA
	2	Al1	Analog signal in 1	Freq. reference P)	0 - +10 V Ri = 200 k Ω
	3	GND 🔴	I/O signal ground		
	6	24Vout	24V output for DI's		± 20 %, max. load 50
					mA
	7	GND	I/O signal ground		
	8	DI1	Digital input 1	Start forward P)	0 - +30 V Ri = 12 kΩmin
	9	DI2	Digital input 2	Start reverse P)	
10 DI3 Dig A A RS		DI3	Digital input 3	Preset speed B0 P)	
		RS485 signal A	FB Communication		
	В	В	RS485 signal B	FB Communication	
	24	RO 21	Relay out 2	ACTIVE (Relay	Max. switching load:
	25	RO 22		opened) = FAULT P)	250Vac/2A or 250Vdc/ 0.4A

API LIMITED

Table 7.3 : SmartVFD Compact General purpose application default I/O configuration and connections for API LIMITED version

P) = Programmable function, parameter lists and descriptions, chapters 9 and 10.

API RS-485

	Terminal		Signal		Factory preset	Description
	3	GND e	I/O signal ground			
	6	24Vout	24V output for DI's			± 20 %, max. load 50
						mA
	7	GND	I/O signal ground			
	8	DI1	Digital inpu	ut 1	1 = Start forward	0 - +30 V Ri = 12 k Ω min
	А	А	RS485 sig	nal A	FB Communication	
B B RS485 si		RS485 sig	nal B	FB Communication		
	24	RO 21	Relay out 2		ACTIVE (Relay	Max. switching load:
	25	RO 22			opened) = FAULT P)	250Vac/2A or 250Vdc/ 0.4A

Table 7.4 : SmartVFD Compact General purpose application default I/O configuration and connections for API RS-485 version

P) = Programmable function, parameter lists and descriptions, chapters 9 and 10.

33

8. CONTROL PANEL

8.1 GENERAL

The SmartVFD Compact API Full and API Limited versions have similar control panels. The panel is integrated to the drive consisting of corresponding application card and an overlay on the drive cover with status display and button clarifications.

The Control panel consists of an LCD display with backlight and a keypad including a navigation wheel, a green START button and a red STOP button (see Figure 8.1).

8.2 DISPLAY

The display includes 14-segment and 7-segment blocks, arrowheads and clear text unit symbols. The arrowheads, when visible, indicate some information about the drive, which is printed in clear text on the overlay (numbers 1...14 in the figure below). The arrowheads are grouped in 3 groups with the following meanings and English overlay texts (see Figure 8.1):

Group 1 - 5; Drive status

- 1= Drive is ready to start (READY)
- 2= Drive is running (RUN)
- 3= Drive has stopped (STOP)
- 4= Alarm condition is active (ALARM)
- 5= Drive has stopped due to a fault (FAULT)
- Group 6 10; Control selections
 - 6= Motor is rotating forward (FWD)
 - 7= Motor is rotating reverse (REV)
 - 8= I/O terminal block is the selected control place (I/O)
 - 9= Keypad is the selected control place (KEYPAD)
 - 10= Fieldbus is the selected control place (BUS)
- Group 11 14; Navigation main menu
 - 11= Reference main menu (REF)
 - 12= Monitoring main menu (MON)
 - 13= Parameter main menu (PAR)
 - 14= Fault history main menu (FLT)

8.3 KEYPAD

The keypad section of the control panel consists of a navigation wheel and START and STOP buttons (see Figure 8.1). The navigation wheel is used for navigating on the panel display, but it also works as a reference potentiometer when KEYPAD has been selected as the control place of the drive. The wheel has two separate functions;

- rotating the wheel e.g. for changing parameter value (12 steps / round)
- pressing the wheel e.g. for accepting the new value.

The drive stops always, regardless of the selected control place, by pressing the keypad STOP button. The drive starts by pressing the keypad START button, but only if the selected control place is KEYPAD.
8.4 NAVIGATION ON THE SMARTVFD COMPACT CONTROL PANEL

This chapter provides you with information on navigating the menus on SmartVFD Compact and editing the values of the parameters.

8.4.1 Main menu

The menu structure of SmartVFD Compact control software consists of a main menu and several submenus. Navigation in the main menu is shown below:

Figure 8.2: The main menu of SmartVFD compact

8.4.2 Reference menu

Figure 8.3: Reference menu display

Move to the reference menu with the navigation wheel (see Figure 8.2). The reference value can be changed with the navigation wheel as shown in Figure 8.3. The reference value follows the rotation continuously (= without separate new value acceptance).

8.4.3 Monitoring menu

Figure 8.4: Monitoring menu display

Monitoring values mean actual values of measured signals as well as statuses of some control settings. They are visible in API Full and Limited display, but they cannot be edited. The monitoring values are listed in Table 8.1.

Pushing the navigation wheel once in this menu takes the user to the next level, where the monitoring value, e.g. M1.11 and value are visible (see Figure 8.2). The monitoring values can be browsed by rolling the navigation wheel clockwise, as shown in Figure 8.4.

Code	Monitoring signal	Unit	ID	Description
M1.1	Output frequency	Hz	1	Frequency to the motor
M1.2	Frequency reference	Hz	25	
M1.3	Motor shaft speed	rpm	2	Calculated motor speed
M1.4	Motor current	A	3	Measured motor current
M1.5	Motor torque	%	4	Calculated actual/nominal torque of the motor
M1.6	Motor power	%	5	Calculated actual/nominal power of the motor

Table 8.1 : SmartVFD Compact monitoring signals

Code	Monitoring signal	Unit	ID	Description
M1.7	Motor voltage	V	6	Motor voltage
M1.8	DC-link voltage	V	7	Measured DC-link voltage
M1.9	Unit temperature	c°	8	Heat sink temperature
M1.10	Motor temperature	c°		Calculated motor temperature
M1.11	Analogue input 1	%	13	Al1 value
M1.12	Analogue input 2	%	14	Al2 value ONLY IN API FULL!
M1.13	Analogue output	%	26	AO1 ONLY IN API FULL!
M1.14	DI1, DI2, DI3		15	Digital input statuses
M1.15	DI4, DI5, DI6		16	Digital input statuses ONLY IN API FULL!
M1.16	RO1, (also RO2, DO in API FULL)		17	Relay/digital output statuses
M1.17	PI setpoint	%	20	In percent of the maximum proc- ess reference
M1.18	PI feedback	%	21	In percent of the maximum actual value
M1.19	PI error value	%	22	In percent of the maximum error value
M1.20	PI Output	%	23	In percent of the maximum out- put value

Table 8.1 : SmartVFD Compact monitoring signals

8.4.4 Parameter menu

In Parameter menu only the Quick setup parameter list is shown by default. By giving the right value to the parameter 13.1 it is possible to open other advanced parameter groups. The parameter lists and descriptions can be found in chapters 9 and 10.

The following figure shows the parameter menu view:

Figure 8.5: Parameter menu

8.4.5 Fault history menu

Figure 8.6: Fault history menu

In Fault history menu you can browse through 9 latest faults (see Figure 8.6). If a fault is active, the relevant fault number (e.g. F1 02) alternates in the display with main menu. When you browse between the faults, the fault codes of active faults are blinking. The active faults can be reset by pressing the STOP button for 1 second. If the fault cannot be reset, the blinking continues. It is possible to navigate in the menu structure also when there are active faults present, but the display returns automatically to the fault menu if buttons or navigation wheel are not pressed or navigation is not rotated. The operating hour, minute and second values at the fault instant are shown in the value menu (operating hours = displayed reading x 1000 h).

Note! The whole fault history can be cleared by pressing STOP button for 5 sec time when the drive is stopped and Fault history menu is selected in the display.

See Chapter 6 in for fault descriptions

43

9. GENERAL PURPOSE APPLICATION PARAMETERS

On the next pages you can find the lists of parameters within the respective parameter groups. The parameter descriptions are given in Chapter 10.

NOTE: Parameters can only be changed when drive is in stop mode!

Explanations:	
Code:	Location indication on the keypad; Shows the operator the present Monitoring value number or Parameter number
Parameter:	Name of monitoring value or parameter
Min:	Minimum value of parameter
Max:	Maximum value of parameter
Unit:	Unit of parameter value; given if available
Default:	Factory preset value
ID:	ID number of the parameter (used with fieldbus control)
	More information on this parameter available in chapter 10: 'Parameter descriptions' click on the parameter name.

9.1 QUICK SETUP PARAMETERS (VIRTUAL MENU, SHOWS WHEN PAR.

13.1 = 1)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.1	Motor nominal voltage	180	500	V	230 400	110	Check rating plate on the motor
	P1.2	Motor nom. fre- quency	30	320	Hz	60.00	111	Check rating plate on the motor
	P1.3	Motor nominal speed	300	2000 0	rpm	1440	112	Default applies for a 4- pole motor.
	P1.4	Motor nominal current	0.2 x I _{Nunit}	1.5 x I _{Nunit}	А	I _{Nunit}	113	Check rating plate on the motor
	P1.5	Motor $\cos\phi$	0.30	1.00		0.85	120	Check rating plate on the motor
	P1.7	Current limit	0.2 x I _{Nunit}	2 x I _{Nunit}	А	1.5 x I _{Nunit}	107	
IF	P1.15	Torque boost	0	1		0	109	0 = Not used 1 = Used
IF	P2.1	Control place	1	3		1	125	1 = I/O terminal 2 = Keypad 3 = Fieldbus
	P2.2	Start function	0	1		0	505	0 = Ramp 1 = Flying start
IF.	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
	P3.1	Min frequency	0.00	P3.2	Hz	0.00	101	
	P3.2	Max frequency	P3.1	320	Hz	50.00	102	
	D3 3	I/O reference	0	4		a	117	 0 = Preset Speeds (0-7) 1 = Keypad Reference 2 = Fieldbus Reference
	1 0.0		0	7		0	,	3 = AI1 (API FULL & LIMITED)
								4 = Al2 (API FULL)
	P3.4	Preset speed 0	0.00	P3.2	Hz	5.00	124	Activated by digital inputs
ıF.	P3.5	Preset speed 1	0.00	P3.2	Hz	10.00	105	Activated by digital inputs
IF	P3.6	Preset speed 2	0.00	P3.2	Hz	15.00	106	Activated by digital inputs
	P3.7	Preset speed 3	0.00	P3.2	Hz	20.00	126	Activated by digital inputs
	P4.2	Acceleration time	0.1	3000	s	1.0	103	Acceleration time from 0 Hz to maximum fre- quency

Table 9.1: Quick setup parameters

Code	Parameter	Min	Max	Unit	Default	ID	Note
P4.3	Deceleration time	0.1	3000	s	1.0	104	Deceleration time from maximum frequency to 0 Hz.
P6.1	AI1 Signal range	0	3		0	379	API FULL and LIMITED: 0 = Voltage 010 V 1 = Voltage 210 V API LIMITED ONLY: 2 = Current 020 mA 3 = Current 020 mA NOTE: When using API LIMITED, select the volt- age/current range also with the dip switch
P6.5	Al2 Signal range (API Full only)	2	3		3	390	2 = Current 020 mA 3 = Current 420 mA
P10.4	Automatic restart	0	1		0	731	0 = Not used 1 = Used
P13.1	Parameter conceal	0	1		1	115	 0 = All parameters visible 1 = Only quick setup parameter group visible

Table 9.1: Quick setup parameters

9.2 MOTOR SETTINGS (CONTROL PANEL: MENU PAR -> P1)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.1	Motor nominal volt- age	180	500	V	230 400	110	Check rating plate on the motor
	P1.2	Motor nominal fre- quency	30	320	Hz	50.00	111	Check rating plate on the motor
	P1.3	Motor nominal speed	300	2000 0	rpm	1440	112	Default applies for a 4- pole motor.
	P1.4	Motor nominal cur- rent	0.2 x I _{Nunit}	1.5 x I _{Nunit}	A	I _{Nunit}	113	Check rating plate on the motor
	P1.5	Motor $\cos\phi$	0.30	1.00		0.85	120	Check rating plate on the motor
	P1.7	Current limit	0.2 x I _{Nunit}	2 x I _{Nunit}	А	1.5 x I _{Nunit}	107	
	P1.8	Motor control mode	0	1		0	600	0 = Frequency control1 = Speed control
IF	P1.9	U/f ratio selection	0	2		0	108	0 = Linear 1 = Squared 2 = Programmable
	P1.10	Field weakening point	30.0 0	320	Hz	50.00	602	
	P1.11	Voltage at field weakening point	10.0 0	200	%	100.00	603	% of Nominal voltage of the motor
F	P1.12	U/f curve midpoint frequency	0.00	P1.10	Hz	25.00	604	
IF	P1.13	U/f curve midpoint voltage	0.00	P1.11	%	50.00	605	% of Nominal voltage of the motor
F	P1.14	Output voltage at zero frequency	0.00	40.00	%	0.00	606	% of Nominal voltage of the motor
	P1.15	Torque boost	0	1		0	109	0 = Not used 1 = Used
IF	P1.16	Switching fre- quency	1.5	16.0	kHz	6.0	601	
ı Æ	P1.17	Brake chopper	0	2		0	504	0=Disabled 1=Used in Run state 2=Used in Run and Stop state

Table 9.2: Motor settings

NOTE! These parameters are shown, when P13.1 = 0.

9.3 START/STOP SETUP (CONTROL PANEL: MENU PAR -> P2)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
IF	P2.1	Control place	1	3		1	125	1 = I/O terminal 2 = Keypad 3 = Fieldbus
F	P2.2	Start function	0	1		0	505	0 = Ramp 1 = Flying start
IF	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
∎Æ	P2.4	Start/Stop logic	0	3		0	300	DI1 DI2 0 Start Fwd Start reverse 1 Start Reverse 2 Start Pulse Stop Pulse 3 Start Fwd Start Rv REAF REAF

Table 9.3: Start/stop setup

9.4 FREQUENCY REFERENCES (CONTROL PANEL: MENU PAR -> P3)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P3.1	Min frequency	0.00	P3.2	Hz	0.00	101	
	P3.2	Max frequency	P3.1	320	Hz	50.00	102	
	D3 3	I/O reference	0	4		3	117	 0 = Preset Speeds (0-7) 1 = Keypad Reference 2 = Fieldbus Reference
	1 5.5		0	T		5	117	3 = Al1 (API FULL & LIMITED) 4 = Al2 (API FULL)
	P3.4	Preset speed 0	0.00	P3.2	Hz	5.00	124	Activated by digital inputs
F	P3.5	Preset speed 1	0.00	P3.2	Hz	10.00	105	Activated by digital inputs
	P3.6	Preset speed 2	0.00	P3.2	Hz	15.00	106	Activated by digital inputs
	P3.7	Preset speed 3	0.00	P3.2	Hz	20.00	126	Activated by digital inputs
	P3.8	Preset speed 4	0.00	P3.2	Hz	25.00	127	Activated by digital inputs
E	P3.9	Preset speed 5	0.00	P3.2	Hz	30.00	128	Activated by digital inputs
	P3.10	Preset speed 6	0.00	P3.2	Hz	40.00	129	Activated by digital inputs
	P3.11	Preset speed 7	0.00	P3.2	Hz	50.00	130	Activated by digital inputs

Table 9.4: Frequency references

NOTE! These parameters are shown, when P13.1 = 0.

i i		_						
	Code	Parameter	Min	Max	Unit	Default	ID	Note
IF	P4.1	Ramp shape	0.0	10.0	s	0.0	500	0 = Linear>0 = S-curve ramp time
	P4.2	Acceleration time	0.1	3000	S	1.0	103	
	P4.3	Deceleration time	0.1	3000	S	1.0	104	
	P4.4	DC braking cur- rent	Unit dep.	Unit dep.	А	Varies	507	
IF	P4.5	DC braking time at start	0.00	600.00	s	0	516	0 = DC brake is off at start
	P4.6	Frequency to start DC braking during ramp stop	0.10	10.00	Hz	1.50	515	
IF	P4.7	DC braking time at stop	0.00	600.00	s	0	508	0 = DC brake is off at stop

9.5 RAMPS AND BRAKES SETUP (CONTROL PANEL: MENU PAR -> P4)

Table 9.5: Motor control parameters

9.6 DIGITAL INPUTS (CONTROL PANEL: MENU PAR -> P5)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
								0 = Not used 1 = DI1
ıF	P5.1	Start signal 1	0	6		1	403	2 = DI2 Only in API FULL & LIMITED 3 = DI3
								4 = DI4 Only in API FULL 5 = DI5 6 = DI6
IF .	P5.2	Start signal 2	0	6		2	404	As parameter 5.1
IF .	P5.3	Reverse	0	6		0	412	As parameter 5.1
	P5.4	Ext. fault Close	0	6		0	405	As parameter 5.1
	P5.5	Ext. fault Open	0	6		0	406	As parameter 5.1
IF .	P5.6	Fault reset	0	6		5	414	As parameter 5.1
i F	P5.7	Run enable	0	6		0	407	As parameter 5.1
IF .	P5.8	Preset speed B0	0	6		3	419	As parameter 5.1
IF.	P5.9	Preset speed B1	0	6		4	420	As parameter 5.1

Table 9.6: Digital inputs

Honeywell

Parameters

Code	Parameter	Min	Max	Unit	Default	ID	Note
P5.10	Preset speed B2	0	6		0	421	As parameter 5.1
P5.11	Disable PI	0	6		6	102 0	As parameter 5.1

Table 9.6: Digital inputs

9.7 ANALOGUE INPUTS (CONTROL PANEL: MENU PAR -> P6)

1	Code	Parameter	Min	Max	Unit	Default	ID	Note				
	Only in API FULL & LIMITED											
	P6.1	Al1 Signal range	0	3		0	379	API FULL and LIM- ITED: 0 = Voltage 010 V 1 = Voltage 210 V API LIMITED ONLY: 2 = Current 420 mA 3 = Current 420 mA NOTE: When using API LIMITED, select the voltage/current range also with the dip switch				
IF .	P6.2	AI1 filter time	0.0	10.0	S	0.1	378	0 = no filtering				
	P6.3	AI1 Custom min	-100.0	100.0	%	0.0	380	0.0 = no min scaling				
	P6.4	AI1 Custom max	-100.0	100.0	%	100.0	381	100.0 = no max scaling				
				Only	in API F	ULL						
	P6.5	AI2 signal range	2	3		3	390	2 = Current 020 mA 3 = Current 420 mA				
IF .	P6.6	AI2 filter time	0.0	10.0	S	0.1	389	0 = no filtering				
	P6.7	AI2 Custom min	-100.0	100.0	%	0.0	391	0.0 = no min scaling				
	P6.8	Al2 Custom max	-100.0	100.0	%	100.0	392	100.0 = no max scaling				

Table 9.7: Analoque inputs

9.8 DIGITAL AND ANALOGUE OUTPUTS (CONTROL PANEL: MENU PAR -> P7)

Code	Parameter	Min	Max	Unit	Default	ID	Selections	
	Only in API FULL							
P7.1	Relay output 1 content	0	8		2	313	0 = Not used 1 = Ready 2 = Run 3 = Fault 4 = Fault Inverted 5 = Warning 6 = Reversed 7 = At Speed 8 = Motor Regulator Active	
In all A	API versions							

Table 9.8: Digital and analogue outputs

Honeywell

Parameters

	Code	Parameter	Min	Max	Unit	Default	ID	Selections
IF	P7.2	Relay output 2 content	0	8		3	314	As parameter 7.1
				On	ly in API	FULL		
IF	P7.3	Digital output 1 content	0	8		1	312	As parameter 7.1
	P7.4	Analogue output function	0	4		1	307	$\begin{array}{l} \textbf{0} = \text{Not in use} \\ \textbf{1} = \text{Output freq. } (0\text{-}f_{max}) \\ \textbf{2} = \text{Output current } (0\text{-}I_{nMotor}) \\ \textbf{3} = \text{Torque } (0\text{-Nominal torque}) \\ \text{torque} \\ \textbf{4} = \text{PI controller output} \end{array}$
	P7.5	Analogue output minimum	0	1		1	310	0 = 0 mA 1= 4 mA

Table 9.8: Digital and analogue outputs

9

9.9 PRO	TECTIONS	(CONTROL	PANEL:	MENU	PAR	->	P9)
---------	----------	----------	--------	------	-----	----	----	---

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P9.1	Response to 4mA reference fault	0	2		1	700	
	P9.2	Response to under voltage fault	0	2		2	727	0 = No response
	P9.3	Ground fault pro- tection	0	2		2	703	1 = Warning 2 = Fault, stop acc. to
	P9.4	Stall protection	0	2		0	709	P2.3
	P9.5	Underload protec- tion	0	2		0	713	
	P9.6	Reserved						
IE	P9.7	Thermal protec- tion of the motor	0	2		0	704	
IF	P9.8	Motor ambient temperature	-20	100	Fahre- heit (C)	40	705	
IF	P9.9	Motor cooling fac- tor at zero speed	0,0	150.0	%	40.0	706	
IF	P9.10	Motor thermal time constant	1	200	min	45	707	

Table 9.9: Protections

NOTE! These parameters are shown, when P13.1 = 0.

9.10 AUTORESTART PARAMETERS (CONTROL PANEL: MENU PAR -> P10)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
IF	P10.1	Wait time	0.10	10.00	s	0.50	717	Delay before automatic restart after a fault has dis- appeared
IF	P10.2	Trial time	0.00	60.00	s	30.00	718	Defines the time before the frequency converter tries to automatically restart the motor after the fault has dis- appeared
	P10.3	Start function	0	2		0	719	0 = Ramp 1 = Flying start 2 = According to P4.2
	P10.4	Automatic restart	0	1		0	731	0 = Disabled 1 = Enabled

Table 9.10: Autorestart parameters

NOTE! These parameters are shown, when P13.1 = 0.

9.11 PI CONTROL PARAMETERS (CONTROL PANEL: MENU PAR -> P12)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P12.1	PI activation	0	2		0	163	0 = Not used 1 = PI for motor control 2 = PI for external use
	P12.2	PI controller gain	0.0	1000	%	100.0	118	
	P12.3	PI controller I- time	0.00	320.0	s	10.00	119	
	P12.4	Keypad PI refer- ence	0.0	100.0	%	0.0	167	
	P12.5	Cotraint course	0	3		0	332	0 = Keypad PI reference, P12.4 1 = Fieldbus
		Setpoint source						2 = Al1 Only in API FULL & LIMITED
								3 = Al2 Only in API FULL
								0= Fieldbus
	P12.6	Feedback source	0	2		2	334	1 = Al1 Only in API FULL & LIMITED 2 = Al2 Only in API FULL
	P12.7	Feedback mini- mum	0.0	100.0	%	0.0	336	0 = No minimum scaling
F	P12.8	Feedback maxi- mum	0.0	100.0	%	100.0	337	100,0 = No maximum scal- ing
	P12.9	Error value inver- sion	0	1		0	340	0=No inversion (Feed- back <setpoint->Increase PI Output) 1=Inverted (Feedback<set- point->Decrease PI Output)</set- </setpoint->

Table 9.11: PI control parameters

NOTE! These parameters are shown, when P13.1 = 0.

IF

9.12 EASY USAGE MENU (CONTROL PANEL: MENU PAR -> P0)

Code	Parameter	Min	Max	Unit	Default	ID	Note
P13.1	Parameter conceal	0	1		1	115	 0 = All parameters visible 1 = Only quick setup parameter group visible
P13.2	Drive setup	0	3		0	540	0 = Basic 1 = Pump drive 2 = Fan drive 3 = Conveyor drive (HP) NOTE! Visible only duri- ing Startup wizard

Table 9.12: Easy usage menu parameters

9.13 SYSTEM PARAMETERS

Code	Parameter	Min	Max	Default	Note		
	Software	informat	tion (ME	NU PAR ->	• S1)		
S1.1	Software package						
S1.2	Power SW version						
S1.3	API SW version						
S1.4	API Firmware interface						
S1.5	Application ID						
S1.6	Application revision						
S1.7	System load						
	RS485 information (MENU PAR -> S2)						
S2.1	Communication status				Format: xx.yyy xx = 0 - 64 (Number of error messages) yyy = 0 - 999 (Number of correct messages)		
S2.2	Fieldbus protocol	0	1	0	0 = FB disabled 1= Modbus		
S2.3	Slave address	1	255	1			
S2.4	Baud rate	0	5	5	0 =300, 1 =600, 2 =1200, 3 =2400, 4 =4800, 5 =9600,		
S2.5	Number of stop bits	0	1	1	0= 1, 1= 2		
S2.6	Parity type	0	0	0	0= None (locked)		
S2.7	Communication time-out	0	255	10	0= Not used, 1= 1 second, 2= 2 seconds, etc.		

Table 9.13: System parameters

Parameters

Code	Parameter	Min	Max	Default	Note
S2.8	Reset communication sta- tus				1= Resets par. S2.1
Total	counters (MENU PAR -> S3)			
S3.1	MWh counter				
S3.2	Power on days				
S3.3	Power on hours				
User	settings (MENU PAR -> S4)				
S4.1	Display contrast	0	15	7	Adjusts the display contrast
S4.2	Restore factory defaults	0	1	0	1= Restores factory defaults for all parameters

Table 9.13: System parameters

NOTE! These parameters are shown, when P13.1 = 0.

10. PARAMETER DESCRIPTIONS

On the next pages you can find the descriptions of certain parameters. The descriptions have been arranged according to parameter group and number.

10.1 MOTOR SETTINGS (CONTROL PANEL: MENU PAR -> P1)

1.8 MOTOR CONTROL MODE

With this parameter the user can select the motor control mode. The selections are:

0 = Frequency control:

The I/O terminal, keypad and fieldbus references are frequency references and the frequency converter controls the output frequency (output frequency resolution = 0.01 Hz)

1 = Speed control:

The I/O terminal, keypad and fieldbus references are speed references and the frequency converter controls the motor speed.

1.9 U/F RATIO SELECTION

There are three selections for this parameter:

0 = Linear:

The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point where the nominal voltage is supplied to the motor. Linear U/f ratio should be used in constant torque applications. See Figure 10.1.

This default setting should be used if there is no special need for another setting.

1 = Squared:

The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening point where the nominal voltage is also supplied to the motor. The motor runs under magnetised below the field weakening point and produces less torque, power losses and electromechanigal noise. Squared U/f ratio can be used in applications where torque demand of the load is proportional to the square of the speed, e.g in centrifugal fans and pumps

Figure 10.1: Linear and squared change of motor voltage

2 = Programmable U/f curve:

The U/f curve can be programmed with three different points. Programmable U/f curve can be used if the other settings do not satisfy the needs of the application

Figure 10.2: Programmable U/f curve

1.10 FIELD WEAKENING POINT

The field weakening point is the output frequency at which the output voltage reaches the value set with par. 1.11.

1.11 VOLTAGE AT FIELD WEAKENING POINT

Above the frequency at the field weakening point, the output voltage remains at the value set with this parameter. Below the frequency at the field weakening point, the output voltage depends on the setting of the U/f curve parameters. See parameters 1.9 - 1.14 and Figures 10.1 and 10.2.

When the parameters 1.1 and 1.2 (nominal voltage and nominal frequency of the motor) are set, the parameters 1.10 and 1.11 are automatically given the corresponding values. If you need different values for the field weakening point and the voltage, change these parameters after setting the parameters 1.1 and 1.2.

1.12 U/F CURVE, MIDDLE POINT FREQUENCY

If the programmable U/f curve has been selected with the parameter 1.9, this parameter defines the middle point frequency of the curve. See Figure 10.2.

1.13 U/F CURVE, MIDDLE POINT VOLTAGE

If the programmable U/f curve has been selected with the parameter 1.9, this parameter defines the middle point voltage of the curve. See Figure 10.2.

1.14 OUTPUT VOLTAGE AT ZERO FREQUENCY

This parameter defines the zero frequency voltage of the curve. See Figures 10.1 and 10.2.

1.15 TORQUE BOOST

The voltage to the motor changes automatically with high load torque which makes the motor produce sufficient torque to start and run at low frequencies. The voltage increase depends on the motor type and power. Automatic torque boost can be used in applications with high load torque, e.g. in conveyors.

- 0 = Disabled
- 1 = Enabled

Note: In high torque - low speed applications - it is likely that the motor will overheat. If the motor has to run a prolonged time under these conditions, special attention must be paid to cooling the motor. Use external cooling for the motor if the temperature tends to rise too high.

1.16 SWITCHING FREQUENCY

Motor noise can be minimised using a high switching frequency. Increasing the switching frequency reduces the capacity of the frequency converter unit.

Switching frequency for SmartVFD Compact: 1.5...16 kHz.

1.17 BRAKE CHOPPER

Note! An internal brake chopper is installed in three phase supply MI2 and MI3 size drives

- 0 = No brake chopper used
- 1 = Brake chopper used in Run state
- 2 = Used in Run and Stop state

When the frequency converter is decelerating the motor, the energy stored to the inertia of the motor and the load are fed into an external brake resistor, if the brake chopper has been activated. This enables the frequency converter to decelerate the load with a torque equal to that of acceleration (provided that the correct brake resistor has been selected). See separate Brake resistor installation manual.

10.2 START/STOP SETUP (CONTROL PANEL: MENU PAR -> P2)

2.1 CONTROL PLACE

With this parameter, the user can select the active control place. The selections are:

1 = I/O terminal 2 = Keypad 3 = Fieldbus

Note: Local/Remote control mode can be toggled by pressing the navigation wheel for 5 seconds. P2.1 will have no effect in local mode.

Local = Keypad is the control place Remote = P2.1 defines the control place

2.2 START FUNCTION

The user can select two start functions for SmartVFD Compact with this parameter:

0 = Ramp start

The frequency converter starts from 0 Hz and accelerates to the set frequency reference within the set acceleration time (P4.2). (Load inertia or starting friction may cause prolonged acceleration times).

1 = Flying start

The frequency converter is able to start also a running motor by applying a small torque to motor and searching for the frequency corresponding to the speed the motor is running at. The searching starts from the maximum frequency towards the actual frequency until the correct value is detected. Thereafter, the output frequency will be increased/decreased to the set reference value according to the set acceleration/deceleration parameters.

Use this mode if the motor is rotating when the start command is given. With the flying start, it is possible to ride through short mains voltage interruptions

2.3 STOP FUNCTION

Two stop functions can be selected in this application:

0 = Coasting

The motor coasts to a halt without control from the frequency converter after the Stop command.

1 = Ramp stop

After the Stop command, the speed of the motor is decelerated according to the set deceleration parameters.

If the regenerated energy is high it may be necessary to use an external braking resistor for to be able to decelerate the motor in acceptable time.

2.4 START/STOP LOGIC

With this parameter the user can select the start/stop logic.

0 = DI1 = Start forward DI2 = Start reverse (API FULL & LIMITED) 1 = DI1 = Start DI2 = Reverse (API FULL & LIMITED) 2 = DI1 = Start pulse DI2 = Stop pulse (API FULL & LIMITED) 3 = DI1 = Start forward, rising edge after fault DI2 = Start reverse, rising edge after fault (API FULL & LIMITED)

10.3 FREQUENCY REFERENCES (CONTROL PANEL: MENU PAR -> P3)

3.3 I/O REFERENCE

Defines the selected frequency reference source when the drive is controlled from the I/O terminal.

- 0 = Preset speed 0 7
- 1 = Keypad reference
- 2 = Reference from Fieldbus (FBSpeedReference)
- 3 = Al1 reference (terminals 2 and 3, e.g. potentiometer)
- 4 = AI2 reference (terminal 4 and 5, e.g. transducer)

3.4 - 3.11 PRESET SPEEDS 0 - 7

These parameters can be used to determine frequency references that are applied when appropriate combinations of digital inputs are activated. Preset speeds can be activated from digital inputs despite of the active control place.

Parameter values are automatically limited between the minimum and maximum frequencies. (par. 3.1, 3.2).

Speed	Preset speed B2	Preset speed B1	Preset speed B0
If P3.3 = 0, Preset speed 0			
Preset speed 1			х
Preset speed 2		х	
Preset speed 3		х	х
Preset speed 4	х		
Preset speed 5	х		х
Preset speed 6	х	х	
Preset speed 7	х	х	х

Table 10.1: Preset speeds 1 - 7

10.4 RAMPS & BRAKES SETUP (CONTROL PANEL: MENU PAR -> P4)

4.1 RAMP SHAPE

The start and end of the acceleration and deceleration ramp can be smoothed with this parameter. Setting value 0 gives a linear ramp shape which causes acceleration and deceleration to act immediately to the changes in the reference signal. Setting value 0.1...10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration and deceleration times are determined with parameters 4.2 and 4.3.

Figure 10.3: S-shaped acceleration/deceleration

4.5 DC BRAKING TIME AT START

DC-brake is activated when the start command is given. This parameter defines the time before the brake is released. After the brake is released, the output frequency increases according to the set start function by par. 2.2.

4.6 FREQUENCY TO START DC BRAKING DURING RAMP STOP

The output frequency at which the DC-braking is applied. See Figure 10.6.

4.7 DC BRAKING TIME AT STOP

Determines if braking is ON or OFF and the braking time of the DC-brake when the motor is stopping. The function of the DC-brake depends on the stop function, par. 2.3.

0 = DC brake is not in use

>0 = DC brake is in use and its function depends on the Stop function,

(par. 2.3). The DC braking time is determined with this parameter.

Par. 2.3 = 0 (Stop function = Coasting):

After the stop command, the motor coasts to a stop without control from the frequency converter.

With the DC injection, the motor can be electrically stopped in the shortest possible time, without using an optional external braking resistor.

The braking time is scaled by the frequency when the DC-braking starts. If the frequency is greater than the nominal frequency of the motor, the set value of parameter 4.7 determines the braking time. When the frequency is 10% of the nominal, the braking time is 10% of the set value of parameter 4.7.

Figure 10.5: DC-braking time when Stop mode = Coasting

Par. 2.3 = 1 (Stop function = Ramp):

After the Stop command, the speed of the motor is reduced according to the set deceleration parameters, if the inertia of of the motor and load allows that, to the speed defined with parameter 4.6, where the DC-braking starts. The braking time is defined with parameter 4.7. If high inertia exists, it is recommended to use an external braking resistor for faster deceleration. See Figure 10.6.

Figure 10.6: DC-braking time when Stop mode = Ramp

10.5 DIGITAL INPUTS (CONTROL PANEL: MENU PAR -> P5)

- 5.1 START SIGNAL 1
- 5.2 START SIGNAL 2
- 5.3 REVERSE
- 5.4 EXTERNAL FAULT (CLOSE)
- 5.5 EXTERNAL FAULT (OPEN)
- 5.6 FAULT RESET
- 5.7 RUN ENABLE
- 5.8 PRESET SPEED B0
- 5.9 PRESET SPEED B1
- 5.10 PRESET SPEED B2
- 5.11 DISABLE PI

The selections for these parameters are:

0 = Not used 1 = Dl1 2 = Dl2 (API FULL & LIMITED) 3 = Dl3 (API FULL & LIMITED) 4 = Dl4 (API FULL) 5 = Dl5 (API FULL) 6 = Dl6 (API FULL)

10.6 ANALOQUE INPUTS (CONTROL PANEL: MENU PAR -> P6)

6.2 All SIGNAL FILTER TIME (ONLY IN API FULL & LIMITED)

6.6 AI2 SIGNAL FILTER TIME (ONLY IN API FULL)

This parameter, given a value greater than 0, activates the function that filters out disturbances from the incoming analogue signal.

Long filtering time makes the regulation response slower. See Figure 10.7.

Figure 10.7: Al1 and Al2 signal filtering

10.7 DIGITAL AND ANALOQUE OUTPUTS (CONTROL PANEL: MENU PAR -> P7)

- 7.1 RELAY OUTPUT 1 FUNCTION
- 7.2 RELAY OUTPUT 2 FUNCTION (ONLY IN API FULL)
- 7.3 DIGITAL OUTPUT 1 FUNCTION (ONLY IN API FULL)

Setting	Signal content
0 = Not used	Not in operation
1 = Ready	The frequency converter is ready to operate
2 = Run	The frequency converter operates (motor is running)
3 = Fault	A fault trip has occurred
4 = Fault inverted	A fault trip has not occurred
5 = Alarm	An alarm has occurred
6 = Reversed	The reverse command has been selected
7 = At speed	The output frequency has reached the set reference
8 = Motor regulator activated	One of the limit regulators (e.g. current limit, voltage limit) is activated

Table 10.2: Output signals via RO1, RO2 and DO1

10.8 MOTOR THERMAL PROTECTION (PARAMETERS 9.7 - 9.10)

The motor thermal protection is to protect the motor from overheating. The Honeywell drive is capable of supplying higher than nominal current to the motor. If the load requires this high current there is a risk that the motor will be thermally overloaded. This is the case especially at low frequencies. At low frequencies the cooling effect of the motor is reduced as well as its capacity. If the motor is equipped with an external fan the load reduction at low speeds is small.

The motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor.

The motor thermal protection can be adjusted with parameters. The thermal current I_T specifies the load current above which the motor is overloaded. This current limit is a function of the output frequency.

CAUTION! The calculated model does not protect the motor if the airflow to the motor is reduced by blocked air intake grill

9.7 THERMAL PROTECTION OF THE MOTOR

- 0 = No response
- 1 = Warning
- 2 = Fault, stop mode after fault according to parameter 2.3

If tripping is selected the drive will stop and activate the fault stage. Deactivating the protection, i.e. setting parameter to 0, will reset the thermal model of the motor to 0%.

9.8 MOTOR AMBIENT TEMPERATURE

When the motor ambient temperature must be taken into consideration, it is recommended to set a value for this parameter. The value can be set between 4° F (-20 °C) and 212 °F (100 °C).

9.9 MOTOR COOLING FACTOR AT ZERO SPEED

The cooling power can be set between 0-150.0% x cooling power at nominal frequency. See Figure 10.8.

Figure 10.8: Motor cooling power

9.10 MOTOR THERMAL TIME CONSTANT

This time can be set between 1 and 200 minutes.

This is the thermal time constant of the motor. The bigger the motor, the bigger the time constant. The time constant is the time within which the calculated thermal model has reached 63% of its final value.

The motor thermal time is specific to the motor design and it varies between different motor manufacturers.

If the motor's 16-time (t6 is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer) the time constant parameter can be set basing on it. As a rule of thumb, the motor thermal time constant in minutes equals to 2xt6. If the drive is in stop state the time constant is internally increased to three times the set parameter value. See also Figure 10.9.

Figure 10.9: Motor temperature calculation

10.9 AUTORESTART PARAMETERS (CONTROL PANEL: MENU PAR -> P10)

10.2 AUTOMATIC RESTART, TRIAL TIME

The Automatic restart function restarts the frequency converter when the faults have disappeared and the waiting time has elapsed.

The time count starts from the first autorestart. If the number of faults occurring during the trial time exceeds three, the fault state becomes active. Otherwise the fault is cleared after the trial time has elapsed and the next fault starts the trial time count again. See Figure 10.10.

If a single fault remains during the trial time, a fault state is true.

10.10 PI CONTROL PARAMETERS (CONTROL PANEL: MENU PAR -> P12)

12.2 PI CONTROLLER GAIN

This parameter defines the gain of the PI controller. If the value of the parameter is set to 100% a change of 10% in the error value causes the controller output to change by 10%.

12.3 PI CONTROLLER I-TIME

This parameter defines the integration time of the PI controller. If this parameter is set to 1,00 second the controller output is changed by a value corresponding to the output caused from the gain every second. (Gain*Error)/s.

12.7 FEEDBACK MINIMUM

12.8 FEEDBACK MAXIMUM

Figure 10.11: Feedback minimum and maximum

10.11 EASY USAGE MENU (CONTROL PANEL: MENU PAR -> P9)

13.2 DRIVE SETUP

With this parameter you can easily set up your drive for four different applications.

Note! This parameter is only visible when the Startup Wizard is active. The startup wizard will start in first power-up. It can also be started as follows. See the figures below.

> NOTE! Running the startup wizard will always return all parameter settings to their factory defaults!

Figure 10.12: Startup wizard

confirm drive setup

Figure 10.13: Drive setup

10.12 FIELDBUS PARAMETERS (CONTROL PANEL: MENU PAR -> S2)

The built-in Modbus connection of SmartVFD Compact supports the following function codes:

- 03 Read Holding Registers

- 04 Read Input Registers
- 06 Preset Single Registers

10.12.1 Modbus process data

Process data is an address area for fieldbus control. Fieldbus control is active when the value of parameter 2.1 (Control place) is 3 (=fieldbus). The contents of the process data has been determined in the application. The following tables present the process data contents in the GP Application.

ID	Modbus register	Name	Scale	Туре
2101	32101, 42101	FB Status Word	-	Binary coded
2102	32102, 42102	FB General Status Word	-	Binary coded
2103	32103, 42103	FB Actual Speed	0,01	%
2104	32104, 42104	Motor freq.	0,01	+/- Hz
2105	32105, 42105	Motor speed	1	+/- Rpm
2106	32106, 42106	Motor current	0,01	А
2107	32107, 42107	Motor torque	0,1	+/- % (of nomi- nal)
2108	32108, 42108	Motor power	0,1	+/- % (of nomi- nal)
2109	32109, 42109	Motor voltage	0,1	V
2110	32110, 42110	DC voltage	1	V
2111	32111, 42111	Active fault	-	Fault code

Table 10.3: Output process data:

Table 10.4: Input process data:

ID	Modbus register	Name	Scale	Туре
2001	32001, 42001	FB Control Word	-	Binary coded
2002	32002, 42002	FB General Control Word	-	Binary coded
2003	32003, 42003	FB Speed Reference	0,01	%
2004	32004, 42004	PI Control Reference	0,01	%
2005	32005, 42005	PI Actual value	0,01	%
2006	32006, 42006	-	-	-
2007	32007, 42007	-	-	-
2008	32008, 42008	-	-	-
2009	32009, 42009	-	-	-
2010	32010, 42010	-	-	-
2011	32011, 42011	-	-	-

Table 10.5: Status Word:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-		Ζ	AREF	W	FLT	DIR	RUN	RDY

Information about the status of the device and messages is indicated in the Status word. The Status word is composed of 16 bits the meanings of which are described in the table below:

Table 10.6: Actual speed:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB															LSB

This is actual speed of the frequency converter. The scaling is -10000...10000. In the application, the value is scaled in percentage of the frequency area between set minimum and maximum frequency.

Table 10.7: Control word:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
•	1	-	1	-	-	•	ı	•	ŀ	ŀ	ŀ	•	RST	DIR	RUN

In Honeywell applications, the three first bits of the control word are used to control the frequency converter. However, you can customise the content of the control word for your own applications because the control word is sent to the frequency converter as such.

Table 10.8: Speed reference:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB															LSB

This is the Reference 1 to the frequency converter. Used normally as Speed reference. The allowed scaling is 0...10000. In the application, the value is scaled in percentage of the frequency area between the set minimum and maximum frequencies. Table 10.9: Bit definitions:

Bit	Des	cription					
	Value = 0	Value = 1					
RUN	Stop	Run					
DIR	Clockwise	Counter-clockwise					
RST	Rising edge of this bit will reset active fault						
RDY	Drive not ready	Drive ready					
FLT	No fault	Fault active					
W	No warning	Warning active					
AREF	Ramping	Speed reference reached					
Z	-	Drive is running at zero speed					

COMPACT VARIABLE FREQUENCY DRIVE (DPD00128A)

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422 customer.honeywell.com Honeywell Limited-Honeywell Limitée 35 Dynamic Drive Toronto, Ontario M1V 4Z9

® U.S. Registered Trademark
© 2011 Honeywell International Inc.
62-0312—03 T.D. Rev. 01-11