Display Group Parameters

No.	Parameter	Min/Max	Display/Options			
d001	[Output Freq]	0.0/[Maximum Freq]	0.1 Hz			
d002	[Commanded Freq]	0.0/[Maximum Freq]	0.1 Hz			
d003	[Output Current]	0.00/Drive Amps $\times 2$	0.01 Amps			
d004	[Output Voltage]	0/Drive Rated Volts	1 VAC			
d005	[DC Bus Voltage]	Based on Drive Rating	1 VDC			
d006	[Drive Status]	0/1 (1 = Condition True)	Bit 3 Decelerating	Bit 2 Accelerating	Bit 1 Forward	Bit 0 Running
$\begin{aligned} & \text { d007- } \\ & \text { d009 } \end{aligned}$	[Fault x Code]	F2/F122	F1			
d010	[Process Display]	0.00/9999	0.01-1			
d012	[Control Source]	0/9	$\begin{aligned} & \text { Bit } 1=\text { Speed Command } \\ & (\text { See P038; } 9 \text { = "Jog Freq") } \end{aligned}$		$\begin{aligned} & \text { Bit } 0=\text { Start Command } \\ & (\text { See P036; } 9=" \mathrm{Jog} \text { ") } \\ & \hline \end{aligned}$	
d013	[Contrl In Status]	0/1 (1 = Input Present)	Bit 3 Dynamic Brake	$\begin{aligned} & \text { Bit } 2 \\ & \text { Stop Input } \\ & \hline \end{aligned}$	Bit 1 Dir/Run REV	Bit 0 Start/Run FWD
d014	[Dig In Status]	0/1 (1 = Input Present)	Bit 3 Digital In4 Sel	$\frac{\text { Bit } 2}{\text { Digital In3 Sel }}$	Bit 1 Digital In2 Sel	$\frac{\text { Bit } 0}{\text { Digital } \ln 1 \text { Sel }}$
d015	[Comm Status]	0/1 (1 = Condition True)	Bit 3 Fault Occurred	Bit 2 RS485 Option	Bit 1 Transmitting	Bit 0 Receiving
d016	[Control SW Ver]	1.00/99.99	0.01			
d017	[Drive Type]	1001/9999	1			
d018	[Elapsed Run Time]	0/9999 Hrs	$1=10 \mathrm{Hrs}$			
d019	[Testpoint Data]	0/FFFF	1 Hex			
d020	[Analog In 0-10V]	0.0/100.0\%	0.1\%			
d021	[Analog $\ln 4-20 \mathrm{~mA}$]	0.0/100.0\%	0.1\%			
d022	[Output Power]	0.00/Drive Power $\times 2$	0.01 kW			
d023	[Output Powr Fctr]	0.0/180.0 deg	0.1 deg			
d024	[Drive Temp]	0/120 degC	1 degC			
d025	[Counter Status]	0/9999	1			
d026	[Timer Status]	0.0/9999	0.1 Secs			
d028	[Stp Logic Status]	0/7	1			

Smart Start-Up with Basic Program Group Parameters

The PowerFlex 40 is designed so that start up is simple and efficient. The Program Group contains the most commonly used parameters.
(O) = Stop drive before changing this parameter.

No.	Parameter ${ }^{\text {a }}$ Min/Max	Display/Options	Default
P031 (0)	[Motor NP Volts] 20/Drive Rated Volts Set to the motor nameplate rated volts.	1 VAC	Based on Drive Rating
$\begin{gathered} \hline \text { P032 } \\ 0 \end{gathered}$	$[$ [Motor NP Hertz] $\quad 15 / 400 \mathrm{~Hz}$ Set to the motor nameplate rated frequency.	1 Hz	60 Hz
P033	[Motor OL Current] $0.0 /($ Drive Rated Amps $\times 2$) Set to the maximum allowable motor current.	0.1 Amps	Based on Drive Rating
P034	[Minimum Freq] $\quad 0.0 / 400.0 \mathrm{~Hz}$ Sets the lowest frequency the drive will output continuously.	0.1 Hz	0.0 Hz
P035 (O)	[Maximum Freq] $\quad 0 / 400 \mathrm{~Hz}$ Sets the highest frequency the drive will output.	1 Hz	60 Hz
P036 0	$[$ Start Source] $0 / 5$ Sets the control scheme used to start the drive. ${ }^{(1)}$ When active, the Reverse key is also active unless disabled by A095 [Reverse Disable].	$\begin{aligned} & 0=\text { "Keypad"(1) } \\ & 1=\text { "3-Wire" } \\ & 2=\text { "2-Wire" } \\ & 3=\text { "2-W Lvl Sens" } \\ & 4=\text { "2-W Hi Speed" } \\ & 5=\text { "Comm Port" } \end{aligned}$	0
P037	[Stop Mode] $0 / 7$ Active stop mode for all stop sources [e.g. keypad, run forward (l/O Terminal 02), run reverse (I/O Terminal 03), RS485 port] except as noted below. Important: l/O Terminal 01 is always a coast to stop input except when P036 [Start Source] is set for "3-Wire" control. When in three wire control, I/O Terminal 01 is controlled by P037 [Stop Mode].	$\begin{aligned} & 0=\text { "Ramp, CF"(1) } \\ & 1=\text { "Coast, CF"(1) } \\ & 2=\text { "DC Brake, CF"(1) } \\ & 3=\text { "DCBrkAuto,CF"(1) } \\ & 4=\text { "Ramp" } \\ & 5=\text { "Coast" } \\ & 6=\text { "DC Brake" } \\ & 7=\text { "DC BrakeAuto" } \end{aligned}$ ${ }^{(1)}$ Stop input also clears active fault.	0

(O) = Stop drive before changing this parameter.

No.	Parameter	Min/Max	Display/Options	Default
P038	[Speed Reference] Sets the source of th drive. Important: When A0 set to option 2, 4, 5, input is active, A051 override the speed r parameter. Refer to User Manual on CD	0/6 speed reference to the 51 or A052 [Digital lnx Sel] is 6, 13 or 14 and the digital A052, A053 or A054 will ference commanded by this hapter 1 of the PowerFlex 40 or details.	$\begin{aligned} & 0=\text { "Drive Pot" } \\ & 1=\text { "InternalFreq" } \\ & 2=\text { "0-10V Input" } \\ & 3=\text { "4-20mA Input" } \\ & 4=\text { "Preset Freq" } \\ & 5=\text { "Comm Port" } \\ & 6=\text { "Stp Logic" } \end{aligned}$	0
P039	[Accel Time 1] Sets the rate of acce	0.0/600.0 Secs for all speed increases.	0.1 Secs	10.0 Secs
P040	[Decel Time 1] Sets the rate of dece	$\begin{aligned} & 0.1 / 600.0 \text { Secs } \\ & \text { for all speed decreases. } \end{aligned}$	0.1 Secs	10.0 Secs
P041 0	$[$ [Reset To Defalts] $\quad 0 / 1$Resets all parameter values to factory defaults.		$\begin{aligned} & 0=\text { "Ready/Idle" } \\ & 1=\text { "Factory Rset" } \end{aligned}$	0

Advanced Group Parameters

No.	Parameter	Min/Max	Display/Options		Default
A051 A052 A053 A054	$\begin{aligned} & \hline[\text { Digital In1 Sel] } \\ & 1 / 0 \text { Terminal 05 } \\ & \text { [Digitial In2 Sel] } \\ & \text { I/O Terminal } 06 \\ & \text { [Digital In3 Sel] } \\ & 1 / \text { Terminal } 07 \\ & \text { [Digital In4 Sel] } \\ & \text { I/O Terminal } 08 \end{aligned}$	0/25	$\begin{aligned} & \hline 0=\text { "Not Used" } \\ & 1=\text { "Acc \& Dec } 2 " \\ & 2=\text { "Jog" } \\ & 3=\text { "Aux Fault" } \\ & 4=\text { "reset Freq" } \\ & 5=\text { "Local" } \\ & 6=\text { "Comm Port" } \\ & 7=\text { "Clear Fault" } \\ & 8=\text { "RampStop,CF" } \\ & 9=\text { "CoastStop,CF" } \\ & 10=\text { ""ClnjStop,CF" } \\ & 11=\text { "Jog Forward" } \\ & 12=\text { "Jog Reverse" } \end{aligned}$	$\begin{aligned} & 13=\text { ""OV In Ctrl" } \\ & 14=\text { ""OmA In Crt" } \\ & 15=\text { "PID Disable" } \\ & 16=\text { "MOP Up" } \\ & 17=\text { ""OP Down" } \\ & 18=\text { "Timer Start" } \\ & 19=\text { "Counter In" } \\ & 20=\text { ""eset Timer" } \\ & 21=\text { "Reset Countr" } \\ & 22=\text { "Rset Tim\&Cnt" } \\ & 23=\text { "Logic In1" } \\ & 24=\text { ""ogic In2" } \\ & 25=\text { "Current Lmt2" } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 11 \end{aligned}$
A055	[Relay Out Sel]	0/20	$\begin{aligned} & 0=\text { "Ready/Fault" } \\ & 1=\text { "At Frequency" } \\ & 2=\text { "MotorRunning" } \\ & 3=\text { "Reverse" } \\ & 4=" M o t o r ~ O v e r l d " ~ \\ & 5=\text { "Ramp Reg" } \\ & 6=\text { "Above Freq" } \\ & 7=\text { "Above Cur" } \\ & 8=\text { "Above DCVolt" } \\ & 9=\text { "Retries Exst" } \\ & 10=\text { "Above Anlg V" } \end{aligned}$	$\begin{aligned} & 11=\text { "Logic In 1" } \\ & 12=\text { "Logic In } 2 " \\ & 13=\text { "Logic } 1 \text { \& } 2 " \\ & 14=\text { "Logic } 1 \text { or 2" } \\ & 15=\text { "StpLogic Out" } \\ & 16=\text { "Timer Out" } \\ & 17=\text { "Counter Out" } \\ & 18=\text { "Above PF Ang" } \\ & 19=\text { "Anlg In Loss" } \\ & 20=\text { "ParamControl" } \end{aligned}$	0
A056	[Relay Out Level]	0.0/9999	0.1		0.0
$\begin{aligned} & \hline \text { A058 } \\ & \text { A061 } \end{aligned}$	$\begin{aligned} & {[\text { Opto Out1 Sel] }} \\ & {[\text { Opto Out2 Sel] }} \end{aligned}$	0/20	$\begin{aligned} & 0=\text { "Ready/Fault" } \\ & 1=\text { "At Frequency" } \\ & 2=\text { "MotorRunning" } \\ & 3=\text { "Reverse" } \\ & 4=\text { "Motor Overld" } \\ & 5=\text { "Ramp Reg" } \\ & 6=\text { "Above Freq" } \\ & 7=\text { "above Cur" } \\ & 8=\text { "Above DCVolt" } \\ & 9=\text { "Retries Exst" } \\ & 10=\text { "Above Anlg V" } \end{aligned}$	$\begin{aligned} & 11=\text { "Logic In 1" } \\ & 12=\text { "Logic In } 2 " \\ & 13=\text { "Logic } 1 \text { \& } 2 " \\ & 14=\text { "Logic } 1 \text { or 2" } \\ & 15=\text { "StpLogic Out" } \\ & 16=\text { "Timer Out" } \\ & 17=\text { "Counter Out" } \\ & 18=\text { "Above PF Ang" } \\ & 19=\text { "Anlg In Loss" } \\ & 20=\text { "ParamControl" } \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
$\begin{aligned} & \hline \text { A059 } \\ & \text { A062 } \end{aligned}$	[Opto Out1 Level] [Opto Out2 Level]	0.0/9999	0.1		0.0
	A055, A058 \& A061 Setting	g A056, A059 \& A062 Min/Max			
	6	$0 / 400 \mathrm{~Hz}$			
	7	0/180\%			
	8	0/815 Volts			
	10	0/100\%			
	16	0.1/9999 Secs			
	17	1/9999 Counts			
	18	1/180 degs			
	20	$0 / 1$			

No.	Parameter	Min/Max	Display/Options		Default
A086	[Break Voltage]	0.0/100.0\%	0.1\%		25.0\%
	Only active when A084 [Boost Select] and A125 [Torque Perf Mode] are set to "0".				
A087	[Break Frequency]	\|0.0/400.0 Hz	0.1 Hz		15.0 Hz
	Only active when A084 [Boost Select] and A125 [Torque Perf Mode] are set to "0".				
A088	[Maximum Voltage]	20/Rated Volts	1 VAC		Rated Volts
A089	[Current Limit 1]	0.1/(Drive Amps $\times 1.8$)	0.1 Amps		Amps $\times 1.5$
A090	[Motor OL Select]	0/2	$0=$ "No Derate"	$\begin{aligned} & 1=\text { "Min Derate" } \\ & 2=\text { "Max Derate" } \end{aligned}$	0
A091	[PWM Frequency]	2.0/16.0 kHz	0.1 kHz		4.0 kHz
A092	[Auto Rstrt Tries]	0/9	1		0
A093	[Auto Rstrt Delay]	0.0/300.0 Secs	0.1 Secs		1.0 Secs
A094 (O)	[Start At PowerUp]	0/1	$0=$ "Disabled"	1 = "Enabled"	0
$\begin{gathered} \hline \text { A095 } \\ 0 \end{gathered}$	[Reverse Disable]	0/1	0 = "Rev Enabled"	1 = "Rev Disabled"	0
A096	[Flying Start En]	0/1	0 = "Disabled"	1 = "Enabled"	0
A097	[Compensation]	0/3	$\begin{aligned} & 0=\text { "Disabled" } \\ & 1=\text { "Electrical" } \end{aligned}$	$\begin{aligned} & 2=\text { "Mechanical" } \\ & 3=\text { "Both" } \end{aligned}$	1
A098	[SW Current Trip]	0.0/(Drive Amps $\times 2$)	0.1 Amps		0.0 (Disabled)
A099	[Process Factor]	0.1/999.9	0.1		30.0
A100 0	[Fault Clear]	0/2	$0=$ "Ready//dle"	$\begin{aligned} & 1=\text { "Reset Fault" } \\ & 2=\text { "Clear Buffer" } \end{aligned}$	0
A101	[Program Lock]	0/9999	0 = "Unlocked"	1 = "Locked"	0
A102	[Testpoint Sel]	400/FFFF	1 Hex		400
A103	Power to drive must be cycled before any changes will affect drive operation.		$\begin{aligned} & 0=" 1200 " \\ & 1=" 2400 " \\ & 2=" 4800 " \end{aligned}$	$\begin{aligned} & 3=" 9600 " \\ & 4=" 19.2 \mathrm{~K} " \\ & 5=" 38.4 \mathrm{~K} " \end{aligned}$	3
A104	Power to drive must be cycled before any changes will affect drive operation.		1		100
A105	[Comm Loss Action]	0/3	$\begin{aligned} & 0=\text { "Fault" } \\ & 1=\text { "Coast Stop" } \end{aligned}$	$\begin{aligned} & 2=\text { "Stop" } \\ & 3=\text { "Continu Last" } \end{aligned}$	0
A106	[Comm Loss Time]	0.1/60.0 Secs	0.1		5.0
A107	[Comm Format] Power to drive must changes will affect d	0/2 e cycled before any ve operation.	$0=$ "RTU 8-N-1"	$\begin{aligned} & 1=\text { "RTU } 8-E-1 " \text { " } \\ & 2=\text { "RTU } 8-0-1 " \end{aligned}$	0
A108	[Language]	1/10	$\begin{aligned} & 1=\text { "English" } \\ & 2=\text { "Fanças" } \\ & 3=\text { "Español" } \\ & 4=\text { "taliano" } \\ & 5=\text { "Deutsch" } \end{aligned}$	$\begin{aligned} & 6=\text { "Reserved" } \\ & 7=\text { "Português" } \\ & 8=\text { "Reserved" } \\ & 9=\text { "Reserved" } \\ & 10=\text { "Nederlands" } \end{aligned}$	1
$\begin{gathered} \hline \text { A110 } \\ 0 \\ \hline \end{gathered}$	[Anlg \ln 0-10V Lo]	0.0/100.0\%	0.1\%		0.0\%
A111	[Anlg In 0-10V Hi]	0.0/100.0\%	0.1\%		100.0\%
A112 (0)	[Anlg In4-20mA Lo]	0.0/100.0\%	0.1\%		0.0\%
A113 (O)	[Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Hi]}$	0.0/100.0\%	0.1\%		100.0\%
A114	[Slip Hertz @ FLA]	$0.0 / 10.0 \mathrm{~Hz}$	0.1 Hz		2.0 Hz
A118	[Current Limit 2]	0.1/(Drive Amps $\times 1.8$)	0.1 Amps		Amps $\times 1.5$
A119	[Skip Frequency]	0/400 Hz	1 Hz		0 Hz
A120	[Skip Freq Band]	0.0/30.0 Hz	0.1 Hz		0.0 Hz
A121	[Stall Fault Time]	0/5	$\begin{aligned} & 0=" 60 \text { Seconds" } \\ & 1=" 120 \text { Seconds" } \\ & 2=" 240 \text { Seconds" } \end{aligned}$	$\begin{aligned} & 3=\text { " } 360 \text { Seconds" } \\ & 4=\text { "480 Seconds" } \\ & 5=\text { "Flt Disabled" } \end{aligned}$	0
A122	[Analog In Loss]	0/6	$\begin{aligned} & 0=\text { "Disabled" } \\ & 1=\text { "Fault (F29)" } \\ & 2=\text { "Stop" } \\ & 3=\text { "Zero Ref" } \end{aligned}$	$\begin{aligned} & 4=\text { "Min Freq Ref" } \\ & 5=\text { "Max Freq Ref" } \\ & 6=\text { "Int Freq Ref" } \end{aligned}$	0
A123	[10V Bipolar Enbl]	0/1	$0=$ "Uni-Polar In"	1 = "Bi-Polar In"	0
A124	[Var PWM Disable]	0/1	$0=$ "Enabled"	1 = "Disabled"	0
A125	[Torque Perf Mode]	0/1	$0=$ "V/Hz"	1 = "Sensrls Vect"	1
A126	[Motor NP FLA]	Drive Amps $\times 0.1 / 2$	0.1 Amps		Rated Amps

No.	Parameter	Min/Max	Display/Options		Default
A127	[Autotune]	0/2	$\begin{aligned} & 0=\text { "Ready/Idle"" } \\ & 1=\text { "Static Tune" } \end{aligned}$	2 = "Rotate Tune"	0
A128	[IR Voltage Drop]	0.0/230.0 VAC	0.1 VAC		Rated Volts
A129	[Flux Current Ref]	0.00/[Motor NP Volts]	0.01 Amps		Rated Amps
A130	[PID Trim Hi]	0.0/400.0	0.1		60.0
A131	[PID Trim Lo]	0.0/400.0	0.1		0.1
A132	[PID Ref Sel]	0/8	$\begin{aligned} & 0=\text { "PID Disabled" } \\ & 1=\text { "PID Setpoint" } \\ & 2=\text { "0-10V Input" } \\ & 3=\text { "4-20mA Input" } \\ & 4=\text { "Comm Port" } \end{aligned}$	$\begin{aligned} & 5=\text { "Setpnt, Trim" } \\ & 6=" 0-10 \mathrm{~V}, \text { Trim" } \\ & 7=" 4-20 \mathrm{~mA}, \text { Trim" } \\ & 8=\text { "Comm, Trim" } \end{aligned}$	0
A133	[PID Feedback Sel]	0/2	$\begin{aligned} & 0=" 0-10 \mathrm{~V} \text { Input" } \\ & 1=\text { " } 4-20 \mathrm{~mA} \text { Input" } \end{aligned}$	2 = "Comm Port"	0
A134	[PID Prop Gain]	0.00/99.99	0.01		0.01
A135	[PID Integ Time]	0.0/999.9 Secs	0.1		0.1
A136	[PID Diff Rate]	0.00/99.99 (1/Secs)	0.01		0.01
A137	[PID Setpoint]	0.0/100.0\%	0.1\%		0.0\%
A138	[PID Deadband]	0.0/10.0\%	0.1\%		0.0\%
A139	[PID Preload]	0.0/400.0 Hz	0.1 Hz		0.0 Hz
$\begin{aligned} & \text { A140- } \\ & \text { A147 } \end{aligned}$	[Stp Logic 0-7]	0001/BAFF	4 Digits For a list of digit opt User Manual on the	efer to the PowerFlex 40 upplied with the drive.	00F1
$\begin{aligned} & \hline \text { A150- } \\ & \text { A157 } \\ & \hline \end{aligned}$	[Stp Logic Time 0-7]	0.0/999.9 Secs	0.1 Secs		30.0 Secs

Fault Codes

To clear a fault, press the Stop key, cycle power or set A100 [Fault Clear] to 1 or 2.

No.	Fault	Description
F2	Auxiliary Input ${ }^{(1)}$	Check remote wiring.
F3	Power Loss	Monitor the incoming AC line for low voltage or line power interruption.
F4	UnderVoltage ${ }^{(1)}$	Monitor the incoming AC line for low voltage or line power interruption.
F5	OverVoltage ${ }^{(1)}$	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.
F6	Motor Stalled ${ }^{(1)}$	Increase [Accel Time x] or reduce load so drive output current does not exceed the current set by parameter A089 [Current Limit].
F7	Motor Overload ${ }^{(1)}$	An excessive motor load exists. Reduce load so drive output current does not exceed the current set by parameter P033 [Motor OL Current].
F8	Heatsink OvrTmp ${ }^{(1)}$	Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ for IP 30 NEMA $1 / \mathrm{UL}$ Type 1 installations or $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ for Open type installations. Check fan.
F12	HW OverCurrent ${ }^{(1)}$	Check programming. Check for excess load, improper DC boost setting, DC brake volts set too high or other causes of excess current.
F13	Ground Fault	Check the motor and external wiring to the drive output terminals for a grounded condition.
F29	Analog In Loss	An analog input is configured to fault on signal loss. A signal loss has occurred.
F33	Auto Rstrt Tries	Correct the cause of the fault and manually clear.
F38	Phase U to Gnd	Check the wiring between the drive and motor. Check motor for grounded phase. Replace drive if fault cannot be cleared.
F39	Phase V to Gnd	
F40	Phase W to Gnd	
F41	Phase UV Short	Check the motor and drive output terminal wiring for a shorted condition. Replace drive if fault cannot be cleared.
F42	Phase UW Short	
F43	Phase VW Short	
F48	Params Defaulted	The drive was commanded to write default values to EEPROM. Clear the fault or cycle power to the drive. Program the drive parameters as needed.
F63	SW OverCurrent ${ }^{(1)}$	Check load requirements and A098 [SW Current Trip] setting.
F64	Drive Overload	Reduce load or extend Accel Time.
F70	Power Unit	Cycle power. Replace drive if fault cannot be cleared.
F80	Autotune Failure	The autotune function was either cancelled by the user of failed.
F81	Comm Loss	If adapter was not intentionally disconnected, check wiring to the port. Replace wiring, port expander, adapters or complete drive as required. Check connection. An adapter was intentionally disconnected. Turn off using A105 [Comm Loss Action].
F100	Parameter Checksum	Restore factory defaults.
F122	1/O Board Fail	Cycle power. Replace drive if fault cannot be cleared.

[^0]
[^0]: (1) Auto-Reset/Run type fault. Configure with parameters A092 and A093.

